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Computational Chemistry as an Integral Component of Lead Generation
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Abstract: From library shaping to ADME-Tox prediction via virtual screening, computational chemistry is an
integral component of Lead Generation. It provides a series of tools that help focusing on compounds with a
balanced pharmacodynamic and ADME-Tox profile together with a high potential to optimize potency and

selectivity.
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INTRODUCTION

Pharmaceutical industry is facing a productivity gap
which is reflected by a reduced number of drug applications
to the regulatory authorities, an increase in development
times and, concomitantly, sharply rising costs for
development [1, 2]. To find a solution to this problem, Lead
Generation groups have been established to thoroughly
assess the optimization potential of hits in the early stage of
the drug discovery process. Their mission is to deliver high-
quality leads with balanced pharmacodynamics and
Absorption Distribution Metabolism Elimination Toxicity
(ADME-Tox) profiles. This goal can only be achieved by
making knowledge-based decisions about advancing or
dropping a candidate based on a multidisciplinary approach
[3]. Fig. (1) describes the workflow of Lead Generation and
focus on the hit identification phase. The paper details each
step involved in this phase and emphasizes the role of
Computational Chemistry for selecting the most promising
compound classes.

Screening of chemical libraries is usually the starting
point of the Hit Generation process. The quality of the
libraries has a dramatic impact on the hits generated either
by high-throughput screening (HTS) [4] or by virtual
screening. A major endeavor has been initiated to clean the
libraries by in silico filtering. These computational filters
will be categorized into two classes, i.e. "hard filters" which
remove compounds from further assessment and "soft filters"
raising alerts for potential liabilities of molecules. The “hard
filters” are directly related to the physicochemical properties.
They are usually more reliable than “soft” filters, which
model more complex phenomena like bioavailability,
metabolism or promiscuous binding. Thus, the “hard”
filters are used to shape libraries by removing undesired
compounds [5], improving the physicochemical properties
(permeability, solubility) and reducing the molecular
complexity [6]. All together, these filters enhance the lead-
likeness nature of the libraries [7]. Concomitantly, library
partitioning into target-based subfamilies has been initiated
in order to promote more efficient focused screens [8].

Depending on the initial knowledge available about a
specific target, many different virtual screening techniques
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can be considered. Our focus will be on ligand-based design
for early hit finding via similarity searching [9] and chemical
feature-based pharmacophore filtering [10].

Once hits are validated, i.e. compounds have been active
in at least two independent biological assays, the first task is
to cluster them by chemotypes [11] and assess their chemical
tractability [12]. Then, medicinal chemists need to identify
the most promising chemotypes for further investigation. At
this crucial decision point, “soft filters” are applied to
prioritize the different classes. Since the “soft filters” are the
results of quantitative structure activity or structure-property
relationships (QSAR/QSPR), they are intrinsically less
accurate. So, they are designed to raise alerts about possible
pitfalls during the hits refinement process. The alerts can be
as diverse as cytochrome P450 liability (CYP450) [13],
hERG K* channel binding [14], drug-likeness [15, 16] or
Frequent Hitters (FH) [17]. The challenge of “soft filters” is
to provide, before any synthesis, a multi-dimensional
overview of the optimization potential of each series so that
the most balanced series in terms of pharmacodynamics and
ADME-Tox are selected. Consequently, powerful
visualization tools are needed to efficiently navigate in this
multi-dimensional space [18].

HARD FILTERS

Hard filters are defined by deriving rules for property
ranges from the analysis of molecules in databases. These
rules are directly connected with the 2-dimensional
molecular structure and can be modified to optimize the
properties of libraries in the design process. Whereas the
pioneering phase of combinatorial chemistry tended to
maximize size and diversity, the current focus is on the
improvement of the chemical and pharmacological properties
of the screened compounds. Hard filters are commonly
applied to reduce the number of false positive hits and to
favor lead-like molecular properties.

Reactivity

At Roche, more than one hundred functionalities have
been defined by a global team of experienced medicinal
chemists. This expert knowledge has been encoded as a
substructure matching tool using the SMARTS language
and can be quickly applied to any new library [19].This list
covers reactive and unstable compounds as well as covalent
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Fig. (1). The lead generation process with a focus on the hit identification phase. The yellow ellipses represent the contributions of
computational chemistry. The shaded triangle indicates the compounds attrition rate in the value-adding chain.

binders [5]. It has been extended to unwanted features (e.g.
poly-acids, alkyl aldehydes, poly-halogenated phenols...),
which are chemically unattractive starting points for a hit to
lead optimization and often produce non-optimizable SAR
patterns. In addition, some particular chemotypes are also
filtered like catechols, detergent or steroids. Nevertheless,
depending on the project, the filtered chemotypes can be
partially or entirely restored.

Physicochemical Properties

Since the aim of most therapeutics is oral bioavailability,
permeability and solubility should be assessed as early as
possible. In general, poor solubility is related to high
lipophilicity, and hydrophilic compounds show poor
permeability. The widely applied "Rule of 5" (Ro5) from
Lipinski et al. [20, 21] predicts that poor absorption or
permeation is more likely if two or more of the following
criteria are met (exceptions: antibiotics, antifungals,
substrates for transporters): > 5 H-bond donors (OH, NH),
molecular weight > 500, clogP > 5, > 10 H-bond acceptors
(sum of N and O). The analysis of particular drug data sets
like central nervous system (CNS) drugs leads to additional
parameters. The polar surface area (PSA) seems to play a
pivotal role in passive diffusion through membranes: PSA <
140A2 for intestinal absorption and PSA < 80A2 for blood-
brain barrier penetration [22]. The number of rotatable bonds
and the number of rings are reflecting the flexibility of the
molecule, which may also have an influence on oral
bioavailability [23]. Besides this qualitative approach,
QSAR models have also been developed for predicting
human in vivo intestinal permeability. Independently of the
methods, the permeability correlates with combinations of
general hydrogen bonding (PSA), hydrogen bond donor
(sum of HBD) and lipophilicity descriptors (clogP) [24].

Lipophilicity is a key parameter influencing membrane
permeability, drug absorption, distribution and clearance.

Several algorithms for logP calculations are available with
each approach showing weaknesses for different structural
classes. Thus, a multivariate profiling with logP prediction
programs is recommended to compensate for errors. The
distribution coefficient logD would be physiologically more
relevant than logP, because the charge state at a given pH
(e.g. blood pH 7.4, intestinal pH 6.5 etc.) is considered.
However, the available pKa calculators are not equally well
parametrized for all structural fragments and the error may be
unacceptably high. The situation is even worse for solubility
prediction, the effects of counter-ions and crystal forms are
only taken into account indirectly by using the experimental
melting point as an additional parameter, which very often is
not available. At present there are no methods available to
reliably predict the pharmaceutically relevant solubility range
of up to 100 ng/ml.

Without accurate pKa calculations, the protonation state
of the molecules and their charge cannot be assigned
properly, which limits their use in QSAR or QSPR models.

Complexity

Having too many functionalities and too large molecules
as starting points for chemistry reduces the opportunity for
“hit refinement”. This observation is supported by the
theoretical work from M. Hann et al., who define the
complexity of the ligand as the number of possible
interaction sites (pharmacophores). They show that an
increasing complexity of the ligands is correlated with a
reduced chance to match the pharmacophoric pattern of the
receptor [6]. The number of bits set in the Daylight
fingerprint is proposed as a metric for molecular complexity.
An alternative is suggested by Ricker et al., who use
substructure, subgraph and walk counts for defining the
complexity [25].
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Lead-Likeness

Complexity and lead-likeness are intimately related.
Indeed, the lead-likeness concept aims at valorized smaller
and less lipophilic molecules [26], since the lead
optimization phase generally increases the molecular weight
and the lipophilicity of the initial compound [7]. Whereas
the Ro5 has been derived from the analysis of fully
optimized molecules, the physicochemical property ranges of
a lead-like molecule are more stringent, leaving room for
further improvements. An upper limit of 350 Dalton for
molecular weight, a clogP range between 1 and 3 and the
presence of maximum one charge (preferably a secondary or
tertiary amine) are recommended. Moreover, the analysis of
the structural difference between drugs and their lead reveals
that they are closely related. This emphasizes the importance
of having high quality leads [27].

Targeted Libraries

In parallel to the compounds quality improvement, a
major effort has been recently initiated to partition libraries
into smaller target family-directed sub-libraries. The goal is
to prioritize a subset of compounds that are more likely to
generate hits. The efficiency of the partitioning is dependent
on the accuracy of the underlying models. The large amount
of knowledge available about G-protein coupled receptors
(GPCR) makes this family very attractive. On the one hand,
Balakin et al. used a statistical classification method to
discriminate between GPCR-ligands and non-GPCR ligands
[8]. On the other hand, Miller has analyzed each family
based on the privileged structures concept [28], which has
been extensively reviewed by Horton et al. [29].

The application of *“hard filters” based on
physicochemical properties will bias libraries towards
compounds more suitable for optimization after a screening
campaign.

VIRTUAL SCREENING

Whereas HTS campaigns are limited by the development
of suitable assays and by the costs, virtual screening

Libraries
size, diversity,

availability, cost
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campaigns fully depend on the reference compounds that are
retrieved from literature or patents. In the context of ligand-
based design, the amount of knowledge already available
will drive the selection of a particular virtual screening
technique. If only few ligands are known and no structure
activity relationship (SAR) has been previously described,
similarity searches are an interesting starting point.

Similarity

The approach is based on the concept that molecules
with closely related structures will have similar biological
activities. Since this assumption is not always valid, Martin
et al. emphasize the need to have a small number of similar
compounds in the libraries to confirm a potential hit but not
too many as to compromise diversity [30]. In similarity
searches, no assumption is made on the chemical features
responsible for the binding.

However, there is a high level of noise since low and
medium affinity compounds do not have a perfect match with
the target, which is due either to missing functionalities or
to parts of the molecule not engaged in binding. For
performing a similarity analysis, molecules need to be
characterized with numerical descriptors, such as calculated
molecular properties or values derived from the two or three-
dimensional structure of the molecules [31]. Since these
descriptors are not fully correlated with the binding event,
additional noise is introduced. Each combination of
descriptors will provide a different description of the
molecules leading to different ranking of compounds [32].
This is true as well for similarity metrics [33]. To overcome
this problem, we have implemented a consensus scoring
scheme to combine the results of various similarity analyses.
In theory, consensus scoring outperforms any single scoring
for a statistical reason: the mean value of repeated samplings
tends to be closer to the true value [34]. Various methods
exist to combine the results. The simplest approach would
be to pick up molecules that are identified by at least two
different similarity metrics. A more sophisticated one would
be to use data fusion rules [35]. Data fusion is a process of
combining inputs from various sources. Primarily created for
sensors measurements, it has been applied to aircraft,
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Fig. (2). The components of the consensus similarity screening.
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medical imaging, internet searches, etc... Several fusion
rules exist in data fusion. The more stable rule is the SUM,
where the sum of all the rank positions is assigned to each
object. In our case, each molecule will be ranked based on
the sum of its rank in each similarity metric.

The consensus approach is very conservative, but in
association with filtered proprietary and external vendors’
libraries, it allows to perform quick SARs without synthetic
effort. So far, at Roche, chemists have access to the in-house
plated collection plus eight external vendors’ libraries
representing one million compounds that are available
within 2-3 weeks. The consensus is performed through a
web interface on the results of four similarity metrics:
Daylight Fingerprint [19], Feature Trees [36], Cats [37] and
Phacir [38] - see Fig. (2).

Pharmacophore-Based Database Mining

When more information is available about the relevant
functionalities involved in the binding, a 3D pharmacophore
model can be established for virtual screening. This
information can be provided by SARs coming from
literature, HTS or similarity searches. The strength of such
an approach is its ability to retrieve different chemotypes
matching the same pharmacophoric pattern. On the one
hand, the pharmacophore model can be applied to screen
existing libraries. The Catalyst software [10] has proven to
be successful in filtering pre-generated conformers’ databases
in many projects [39]. On the other hand, the model can be
used to generate molecules de novo [40]. They are usually
used as a template for further chemistry designs.

Clustering

Clustering is an important aspect of the analysis of
screening hit lists where the hits have to be partitioned into
meaningful chemical classes and prioritized. Several
clustering methods are available and there is no clear recipe
to achieve this goal. Whether hierarchical methods, such as
Ward’s clustering or non-hierarchical methods, such as
Jarvis-Patrick, k-nearest neighbors, self-organizing maps, are
applied the clustering results depend on many parameters
such as descriptors selection, data normalization, similarity
metrics...[11] Moreover, hierarchical clustering will not
reveal the number and the distribution of the structural
families before an arbitrary threshold is chosen and it is even
worse for partitional clustering where the number of clusters
needs to be set a priori.

Whereas the grouping of compounds with respect to
properties is an established and fast procedure, the
partitioning into chemotypes is not straightforward.
Constant effort has been pursued in Peter Willett’s team to
implement and validate graph fitting algorithms that identify
the maximum common subgraph (MCS) between two
molecules, leading to improvement of the efficiency of
clique-detection algorithm efficiency either by heuristics
approaches [41], reduced graphs [42], or association with
pharmacophores [43]. The MCS approach seems promising,
as it deals directly with chemical structures. However, MCS
calculations are quite time-consuming and their validity for
chemotype identification within the workflow of hit selection
still needs to be established [44].

Roche and Guba

An alternative method has been proposed by Xu [45].
The scaffold-based classification approach (SCA) starts with
the identification of all the non-redundant scaffolds, forming
different topological classes. Then, all the structures falling
in the same classes are sorted in ascending order of structural
complexity. The least complex molecule, i.e the least
substituted, will be the center of the class.

As soon as some interesting clusters have been
highlighted, an important decision should be taken about the
series to be further optimized.

Chemical Tractability

Synthetic tractability is one of the main criteria for
selecting hit classes. Retrosynthetic analysis procedures have
provided chemistry guidelines for the selection of both
scaffolds and building blocks easily accessible by
combinatorial chemistry for the exploration of the SAR. A
broadly used approach is based on the Retrosynthetic
Combinatorial Analysis Procedure (RECAP) rules that
fragment molecules based on 11 predefined bond types. It
can be used either to automatically shred compounds or,
with some modification, to build them de novo [12].
Nevertheless, most of the time, chemical tractability depends
on the experience of the project chemists and the availability
of the starting material. For that purpose and also to assess
patentability, databases like SciFinder [46] and Derwent [47]
are used.

SOFT FILTERS

Usually, the only experimental data available to select
the appropriate clusters is a dose-response curve: 1C50, Ki or
EC50. The role of the computational chemist is now to
provide further information about ADME-Tox liabilities for
each selected class. The “soft filters” are used to prioritize
the different chemotypes by raising alerts with respect to
binding to cytochrome 450 (CYP450), human serum
albumin (HSA) or hERG as well as frequent hitters
identification.

Frequent Hitters

The frequent hitters (FH) are defined as molecules
showing up as hits in many different assays covering a wide
range of targets [17]. Since we have already filtered the
covalent binders and unstable compounds (see *“hard
filters”), this definition encompasses the promiscuous
inhibitors (non-specific binders) described by McGovern et
al. [48], and also includes compounds perturbing assay or
detection methods. The FH model has been built on a
mixed approach. The first step consists of identifying
molecules which were more than 8 times among the best
1000 hits across 161 HTS assays. Then, this list has been
submitted to the vote of eleven independent medicinal
chemistry teams. Based on this data set an in silico
prediction model (three-layered neural network) was built.
As an independent validation set, 31 promiscuous ligands
published by McGovern et al. [48] have been used to assess
if the FH model is stable. 25 out of 31 have been predicted
successfully, the false negatives are depicted in Fig. (3).
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Fig. (3). Experimentally determined promiscuous ligands, which are not identified by the Frequent Hitter in silico filter.

Drug-Likeness

Whereas lead-likeness analyzes molecular property
ranges, drug-likeness is based on patterns derived from oral
drugs. The assumption is that drugs have favorable ADME-
Tox properties, including permeability and solubility.
Dozen of classification methods have been applied to
discriminate between drugs and non-drugs sets. All have
been quite successful as reviewed by Walters et al. [49].
Nevertheless, these models are “black boxes” since the
results cannot be traced back to the molecular structure.
Moreover, the selection of a relevant non-drugs data set is far
from trivial because non-drug-likeness is inferred from the
lack of a drug history. To avoid this problem, various
groups have focused on the description of the drug properties
and extracted simple rules [50] or pharmacophores [51].

ADME-Tox

The final step for a full profiling of compounds is the
prediction and measurement of ADME-Tox properties. Even
if recent advances in in vitro ADME-Tox technologies have
enhanced the throughput of some assays (absorption,
solubility, CYP450 inhibition...) to an unprecedented level,
the improvement of others is still difficult due to the
underlying mechanisms (metabolic stability, hERG liability,
cytotoxicity...) Moreover, some properties can only be
measured in vivo: bioavailability, volume of distribution,
half-life.... Therefore, only a complementary use of
experimental and in silico ADME-Tox methods will allow
to achieve the throughput imposed by chemistry [52]. The
in silico prediction of ADME-Tox properties from the
chemical structure has been reviewed previously [53, 54].
The main limitation is the predictability, often coming from
the availability of suitable data sets. Indeed, a sufficient
quantity and diversity of the molecules as well as controlled
quality and homogeneity of the experimental results is the
only way to achieve reliable models. Mechanistic or expert
models are usually more suited for generalization than the
statistical models, which are limited to the chemical space of
the training set. According to Clark, the blood-brain barrier
(BBB) permeation models have reached their optimum given

the available data sets [22]. Hence, new improvements can
only come from new data. For that reason, major
pharmaceutical companies have a clear advantage since they
can use their proprietary data sets to develop the models and
use the public heterogeneous data sets for validation. This is
the protocol we have followed to build our own HSA,
CYP450 3A4 and hERG filters [13,14,55]. As “hit
identification” is dealing with compounds coming from HTS
or virtual screening, the ADME-Tox models have to be
“global” and need to be dynamically refined with newly
generated experimental data.

If ADME properties are difficult to predict, toxicology
models are even more complicated due to the few data points
available, the intrinsic variability of the end-points and also
the large diversity of underlying mechanisms. Commercial
softwares are based on QSAR models [56], expert models
DEREK [57] or both MCASE [58].

All these ADME-Tox prediction tools are regarded as
qualitative to prioritize the series that will be further
optimized by chemistry. The combination of these soft filters
with the physicochemical properties and biological results
provides a multi-dimensional matrix, which needs to be
analyzed.

Visualization

It is extremely important for the decision making process
that the chemists can visualize all the properties and extract
patterns and trends. In addition, these values should be
linked to the chemical structures of interest. Spotfire [18] and
Miner3D [59] are powerful tools providing different ways to
quickly select specific property ranges. There are also more
dedicated packages like SARNavigator [60] or ClassPharmer
[61] that perform the calculations of properties, clustering
and visualization. Finally, major pharmaceutical companies
have implemented their own in-house solution like the Hits
Analysis Database (HAD) described by Shen [62].

Up to the end of the “hit identification” process, no
resources need to be committed to the synthesis of new
compounds. Chemistry efforts will start as soon as the
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chemical classes will be selected. Then, the computational
chemistry support will focus on series specific models
(“local” models) during the optimization process. This
knowledge-based decision is now driven by information from
heterogeneous  sources such as biological data,
physicochemical properties, tractability and patentability,
which has been compiled to assess as early as possible the
optimization potential of the screening hits.

CONCLUSION

From library shaping to the first synthesized molecules,
computational chemistry is supporting chemists in the
selection of compounds for further optimization. From
millions of compounds to a particular scaffold, the task is to
identify the molecules that will have the right balance
between potency and ADME-Tox properties. For that
purpose, many in silico filters have been established to
transform the current knowledge into computational models,
which are applied for multivariate profiling of novel
molecules. However, most of these filters are only well
suited for a large number of compounds since they are based
on statistical models and none of them should be applied on
a single molecule. Therefore, they fit nicely with the Lead
Generation phase where the goal is to reduce the number of
compounds and to focus on the most promising ones. When
the chemistry effort has started on particular chemotypes
(Lead Optimization), QSAR and QSPR approaches should
be valorized.

Nowadays, large number of computational tools are
available to support medicinal chemists’ decisions in all
phases of Lead Generation. Specifically, the “hit
identification” process benefits from the constant
improvements of computational tools since they cover a
wide range of techniques such as library design, virtual
screening, clustering and property modeling. Thus,
computational filters complement the experience and
creativity of the medicinal chemists [63].
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ABBREVIATIONS

HTS = High-Throughput Screening

ADME- = Absorption Distribution Metabolism

Tox Elimination Toxicity

QSAR = Quantitative Structure-Activity Relationship
QSPR = Quantitative Structure-Property Relationship
CYP450 = Cytochrome

FH = Frequent Hitters

Ro5 = Ruleof5
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CNS = Central nervous system

PSA = Polar surface area

GPCR = G-protein coupled receptor

SAR = Structure Activity Relationship

MCS = Maximum common subgraph

SCA = Scaffold-based Classification Approach

RECAP = Retrosynthetic Combinatorial Analysis
Procedure

HSA = Human Serum Albumin

BBB = Brain Blood Barrier
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